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The problem of motion of controlled mechanical systems under prescribed constraints
{servoconstraints) is considered. The problem cousists in applying & control to a given
system to assure that in the course of its motion a given number of specified relationships
among the variables of the problem (prescribed system constraints) are fulfilled. This
involves finding the required control and determining the character of motion if the pres-
cribed constraints are fulfilled exactly.

In a sense, the problem is not new. In 1922 Béguin published his thesis on gyroscopic
compasses in which he pointed out the existence of a special class of mechanical systems
which were then called servosystems and which now might more properly be termed con-
trolled mechanical systems. The distinctive feature of these systems lies in the apecial
means of effecting certain limitations (called “*servoconstraints’ by Appell) on the system
motion, In his work Appell [1] developed the theory of such mechanical aystems. However,
consideration of servosystems as controlled systems makes possible a new approach to
the problem, enabling one to pose the problem of motion of systems under prescribed con~
straints (servoconstraints) more precisely and to obtain more complete results.

In the present paper we shall develop a general formal method for solving the problem.
The method consists in reducing the prescribed constraints of the system to real con-
straints and in adding to the equations of system motion obtained under this assumption
the dynamic conditions of fulfillment of the prescribed constraints (the conditions of
equality to zero of their reactions). The resulting equations constitate the solution of the
problem.

1. A controlled system of n material points moves in some stationary Cartesian coordin-
ate system. We denote by x,, x5, %3, my =ma=m3 the coordinates and mass of the first
point of the system, by x,, x4, x4, mq = ms = mg the coordinates and mass of the second
point, etc. The points of the system are subject to ideal holonomic and nonholonomic con~
straints which may include constraints dependent on the control parameters [2]. Let the
equations of the system be

fﬂ(ty LYy ooy Tany Uy, -« oy uk) =0

fg+x (ty Ty o - oy Tgn, xl,v .oy x:m’, Uty v o oy uk) =0 (1‘1)
where Uy, »., ux are the system control parameters.
The %orces acting on the system will be assumed to be specific functions of time, the
coordinates and velocities of the system points, and the control parameters. By X 10 X30 Xy
we denote the components of the coordinate axes of the resaltant of the active forces
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acting on the first point of the system, and by X,, X 4, Xs the components of the resultant
of the forces acting on the second point, ete.
As in the case of uncontrolled systems, the motion of controlled mechanical systems is
described by the fundamental equation of mechanics [2]
Z(mm”—Xo dzy=0 (1.2)

where §x;,..., 8 %3, are the components of the possible displacements of the system given

by the usual relations of of
szaxﬁo, ! ‘*“az,:.—.o

From Eq. (1.2) we obtain the following general eqnlﬁons of motion of a controlled mech:
anical system:
o, ¥ gox

zxz = X( + Z’“P + Zkgﬂt az.il (1.3)

where 7\., and A g+x are indefinite Lagrange mnlﬁplieu. Summation in Egs. (1.3) is carried
out over all constrnints {1.1) of the mechanical system under consideration.
Let us consider the following problem. We are given a certain number of relations

%(t’ L1y o o vo Tan, Un,y -"1uk)zo

Prin (B, 21y + o Tony T1's - o oy Tan' s Uny ooy Up) = 0

By effecting appropriate control of the system we must guarantee exact fulfillment of
these relations in the course of system motion. A more precise way of stating the problem
is to ask the following questions: Once relations (1.4) are fulfilled at the initial instant, wk
is the control required to guarantee their fulfillment in the fature? What will be the conse-
quent motion of the system once such a control is applied?

Relations (1.4) will be called the prescribed constraints or servoconstraints of the sys-
tem. These constraints are, so to speak, ‘‘enforced’’ by the appropriate system control. In
this sense prescribed constraints are identical to the servoconstraints of Béguin and
Appell. This is clearly apparent from the following description of servoconstraints given
by Appell [1]:

** There exists an important class of mechanisms in which constraints are realized by
a means entirely different from those considered up to now. For mechaniams of this class
the means of realization of the constraints cannot be ignored.

* The constraints realized by these mechanisms are arbitrary; most often they are
holonomic. But the constraints are effected not by simple contact — not, so to speak, pas-
sively. Their realization involves the use of various forces (electromagnetic forces, com-
pressed air pressure, etc.), i.e. of auxiliary energy sources which are automatically actua-
ted and automatically controlled in such e way that the given constraint is realized at each
instant. Such a mechanism can be compared with a living organism acting by direct contact
and regulating its efforts in such a way as to fulfill a given constraint.”

Appell did not use the term ““control” in his description of servoconstraints. This tem
simply did not exist at the time. But it is clear that in describing the means of fulfiliment
of servoconstraints Appell had in mind that which we now call *‘control”.

The above problem of the motion of a controlled mechanical system with prescribed con~
straints can be solved by simultaneous investigation of Egs. (1.3), (1.1), and (1.4). The
required system control is then obtained from the compatibility condition for these equations.
The motion can then be determined by direct integration of Egs. of system motion {1.3).

This method of solving the problem is hardly expedient, since it involves integration of
a system of differential equations of, generally spesking, a rather high order. This neces-
sarily gives rise to the problem of lowering the order of the differential equations of the
problem with due regard for its specific features. In particular, there arises the task of

(1.4)
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deriving specialized equations for the case under investigation which describe the problem
fully but at the same time are of the lowest possible order.

The classical method of solving this problem for ordinary mechanical systems is to
introduce generalized coordinates. As will be shown below, the problem can be solved in
exactly the same way for the motion of controlled mechanical systems with prescribed
constraints.

2. Let us assume that equations independent in the control parameters have been isola-
ted from Eqgs. {(1.1), and that the control parameters have been eliminated from the remain-
ing Egs. {1.1). Further, we assume that the transformed Eqs. (1.1} are numbered in such a
way that the parametric equations form the first a equations in the group of holonomic
constraint equations and the first b equations in the group of nonholonomic constraint
equations.

Taking into account the equations of the holonomic constraints independent of the con-
trol parameters, we introduce the generalized parameters of the system q,,..., ¢s+ Then,
teking account of the equations of the nonholonomic constraints independent of the control
parameters, we introduce the generalized velocity parameters wjyeeey @y

Note 2.1. The exclusive use of constraint equations independent of the control parame-
ters in introducing the generalized coordinates is intended to exclude derivatives of the
control parameters from the equations of motjon of the system, and thus to avoid arntificial
increases in the order of the final system of differential equations of the problem.

Expressing the Cartesian coordinates of the system in tems of its generalized coor-
dinates and the derivatives of the latter with respect to time in terms of the generalized
velocity parameters, we have

zy=2z;(f, q1, - - -1 Tu)r ge' = Aalt, g1+ G0 @1, -+ s Op)  (2.1)
These equations enable us to transform the general equations of system motion (1.3) to

the form
o

af W gan.
where S is the energy of accelernﬁons of the system and Qf are the generalized forces of
the system referred to the velocity parameters. The latter are of the form
dz; 34, oz’
—3
EX" aq, Bmi ZX*

Eqs. (2.2) are ordinary Appell equations in which the (real) parametric constraints of
the system are taken into account by way of indefinite multipliers. To Egs. (2.2) we must
add the equations of the real parametric constraints of the system after we have written
these in terms of the generalized coordinates and velocity parameters

f?(t:Qh-"’q:: ul"":uk)z() {2.8)

| Y (I MUY S .,m;,,ul., el =0 (p=12..,8 x=12....b
as well as Eqs. (1.4) of the prescribed constraints of the system expressed in the same
variables.

8. Consideration of the real constraints of the system independent of the contro! para-
meters by way of generalized coordinates and velocity parameters enables us to exclude a
number of ‘*excess’ (dependent) variables from the differential equations of the problem
and thus to reduce their overall order. Further elimination of dependent variables from the
differential equations and therefore further reduction of the overall order of the equations
can be effected through consideration of the prescribed constraints of the system.

Let us sappose that, as in the case of Eqs. (1.1), we have isolated from Eqs. (1.4) of
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the prescribed constraints of the system the equations independent in the control parame-
ters both among themselves and in relation to the parametric equations of transformed
system (1.1); let us assume, moreover, that the control parameters have been eliminated
from the remaining Eqs. (1.4). Next, we renumber the transformed Eqgs. (1.4) in such a way
that only the first ¢ equations in the group of holonomic prescribed constraint equations
and the first d equations in the group of nonholonomic prescribed constraint equations
depend on the control parameters, We assume that the generalized coordinates and velocity
parameters of the system have been chosen in such a way that the fulfillment of the pres-
cribed constraints independent of the control parameters is equivalent to the vanishing of
the last s — r generalized coordinates and the last p — g generalized velocity parameters.
For convenience, we write
Grr1=My ey Ga=Mgpy, D1 =Ty, ..., Op =Tpy (3.1
The equations of the prescribed constraints of the system independent of the control
parameters can then be written as
T|1=Oy'-') ns—r=0; n1=01""1 np—q-_‘:o (3.2)
Taking account of the latter equations, we can rewrite the equations of the parametric
prescribed constraints as

(Pc(t,Qh---,Qr, ULy« v oy uk)"_‘o (3.3)

Pran (8 1y v o oy @ry @1, « ooy O, Uy, .. . Uy) =0 (6=1,2,...,an0=1,2,...,d)

Now let us substitute conditions (3.2) into Eqs. (2.3) and (2.2). We first rewrite both of
the latter with allowance for notation (3.1). Eqs. (2.3) then become

fp(ty g1y v oy GraMy - - oy MNo—ry Uy, - - '7uk) =0
f|z+x (t1 ql, ooy qry rlh . ey T‘S—r) (1)) PR ")qv 1y e v ay np~q’ Uy - - uk) = O

(p=1,2,...,a;x=1,2,...,0)
Egs. (2.2) become

of, of
—:—sz»»pa + 3 ha G
= o (3.4)
as l 6/ ’ 6/‘g+x
anl=HT+Z g% T (E:1r2y»Qt 721,21---117‘_“1)
* p=1 x=]
where in the second group of equations we use the notation
H1=Qq+1‘ (T:1,2,---,P"‘Q)

For convenience, we denote the result of substituting conditions (3.2) into any given
expression A by A *. Eqs. (2.3) into which we have substituted conditions (3.2) can then
be written as

for (b @y oo s Gty oo U) =0, Foon (€ q1y ooy Gry ©1, o, Og, Uy, o v ey Ug)=0
(p=1,2,...,a; % =1,2,...,b) (3.5)
Substituting conditions (3.2) into Egs. (3.4), we take into account the identities
<y_>* _ 94 dAV* _ 9 d4\* _ da*
do’) ~ 0@’ (Tm) ~ B0 (ET) dt

whose validity can be readily demonstrated.
Making use of these identities, we can substitute conditions (3.2) into Egs. (3.4) and
then reduce them to
88 . M < 3 gon
g+x
Fo = "+ Z’Vp—af);‘f‘ z}“gw—a;,? (3.6)
p=1

x=1
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35 \* * 2 a;’p' * b Bfg“‘ * 7
(am7) =Tm+ 20 () + 2 hen (557 o
p=1 T x=1 T

It remains for us now to substitute conditions (3.2) into group of Egs. (2.1) relating the
derivatives of the generalized coordinates to the generalized velocity parameters. To this
end we rewrite these equations taking account of notation (3.1). We have

q?‘, = Al & qu. .. Gry N1z« e oy Mgy Oy 000y (’)qx b1 DIRI ﬂp_q)
’qY, = Ar+.¢. (tr {h» LIRS ] Q,x T]I: ey "ls_,y [ EAR mqs ﬂ}_, .y “p_q)
Introducing conditions (3.2) into these equations, we obtain
th e Al* (t, 1y v o oy qr’ W1y e oWy ﬁ)q)
0=457¢aqa .. 9,01,...,0)

By hypothesis, the variables ¢y ,.., @rs @j,eees Qg MuSt remain independent upon ful-
fillment of the prescribed constraints of the system. Hence, the equations of the second
group of system (3.8) must be satisfied identically. The remaining Egs. (3.8) together
with Egs. (3.6) and (3.7) and the equations of the parametric real (3.5) and prescribed

(3.3) constraints of the system form the complete system of equations of the problem of
motion of a controlled mechanical system with prescribed constraints under consideration.

(3.8)

4. We shall now explain the mechanical significance of Egs. (3.6) and (3.7).

It is readily apparent that Eqs. (3.6) constitute the equations of motion of the mechani-
cal system under consideration provided its prescribed constraints which are independent
of the control parameters are interpreted as real constraints and are taken into account
accordingly.

Egs. {3.7) mean that the reactions of the prescribed constraints of the system, insofar
as the latter are interpreted as real constraints, must be equal to zero in the course of
system motion. This implies that the fulfillment of the prescribed constraints is achieved
exclusively by way of the external active forces and reactions of the real pacametric
constraints acting on the system.

Note 4.1.The term *‘(generalized) constraint reaction’” used above denotes the totality
of increments to be added to the generalized forces of the system in order to assure con-
tinuance of its initial motion. This definition of constraint reaction is in complete agreement
with the general mechanical significance of the term and is, in fact, identical to the
definition of a generalized constraint reaction given in [3]

Thus, a mechanical system obeys prescribed constraints as though these constraints
were real; the reactions of the latter must equal zero, however.

We shall call Eqs. (3.6} the equations of motion of a mechanical system with prescribed
constraints. Egs. {3.7) will be called the conditions of equality to zero of the prescribed
constraint reactions, or (since they are ultimately the conditions imposed on the forces in
order to guarantee fulfillment of the prescribed constraints) the dynamic conditions of ful
fillment of the prescribed system constraints. The possibility of interpreting and allowing
for the prescribed constraints of a mechanical system as real constraints will be called the
prescribed-to-real constraint reduction principle.

We note that the principle of reduction to real constraints applies both to prescribed
constraints independent of the control parameters and to parametric prescribed constraints.
In fact, in taking account of both parametric and real constraints one must introduce

terms corresponding to these constraints into the equations of the problem by way of
indefinite Lagrange multipliers. But these multipliers are equal to zero because they are
proportional to the reactions of the corresponding constraints, and the latter must equal
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zero by virtue of the reduction principle. For this reason, all terms associated with para-
metric prescribed constraints drop out of the equations of the problem. The equations of
parametric prescribed constraints are therefore simply added on to the equations of the
problem, precisely as we have been doing from the very start.

5. The chief practical value of the reduction principle lies in the possibility it affords
of deriving immediately the equations of motion of a controlled mechanical system with
prescribed constraints.

To this end, the parametric constraints {first the real and then the parametric constraints
independent of the latter and of each other) are isolated from the totality of (resl and pres-
cribed) system constraints. The control parameters are eliminated from the remaining con-
straint equations.

The equations of motion of the system with consideration of all its constraints are then
constructed in accordance with the reduction principle. It is suggested that the parametric
constraints of the system be allowed for by means of indefinite multipliers, and the con-
straints indépendent of the control parameters by the introduction of generalized coordinates
and velocity parameters. This method of allowing for constraints affords a maximum reduc-
tion in the order of the differential equations of the problem,

To the equations of gystem motion must be added the dynamic conditions of fulfillment
of the prescribed constraints, the equations of the parametric real and prescribed cons-
traints, and the equations relating the derivatives of the generalized coordinates to the
velocity parameters.

In deriving the dynamic conditions, once its equations of motion have been constructed
the system is liberated of prescribed constraints, while the totality of its generalized
coordinates and velocity parameters is supplemented by the required number of new
generalized coordinates and velocity parameters. The dynamic conditions of fulfillment of
the prescribed constraints are obtained through formal consideration of the prescribed
constraint equations in the equations of motion of the liberated system corresponding to
the additional generalized coordinates and velocity parameters.

We derived the dynamic conditions in the form of Eqs. (3.7). It is true that in deriving
them we made use of a special set of additional generalized coordinates and velocity para-
meters for which the equations of the prescribed constraints (independent of the control
parameters) could be written in the simplest form (3.2). However, the general scheme for
constructing dynamic conditions presented above makes it possible to obtain equations
equivalent to (3.7) for practically any set of additional generalized coordinates and velo-
city parameters of the system.

In fact, let us assume that upon liberation of the system from prescribed constraints the
additional generalized coordinates and velocity parameters are chosen arbitrarily. We de-
note these by {;,.ve Lyups O1re00s Opogs Tespectively. Any two sets of generalized coordin-
ates and velocity parameters of the system can stand in a one-to~one correspondence. Such
a correspondence likewise exists between the arbitrary and previously introduced special
sets of the indicated variables. Let us assume that this correspondence is expressed by
Egs.

Le=C a0 My my)
s, =6, (t: Qs vvs Gry My e ooy Mgy O1 .- o (O7 701> FE p_q)

Since Gyyeuey §rs Dyreees g eNLED inte both sets of generalized coordinates and velocity
parameters, by virtue of the one-to-one character of the correspondence expressed by Egs.
(5.1) the latter must be solvable for the variables 1y,..., Ng_p, f1s-o-y Fy_go This means,
generally speaking, that the inequalities

(5.1)
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0@ b Lo 20 n%g) g

(M, -+ . Myy) (M, ..., ®, ) (5.2)

must be valid.
Taking into account Eqs. (5.1), we obtain

as as 9o, ( a:q)
o 36 an H 2 v 0:\‘. Z X
T

8, _ afe’ 9o, , afg+x= 0f g4x 95y
=2 3s, om on, ds, om,

and then

b
of
_ — gtx __
H 2 }"9 61! Z A'E“‘ an
1

p==1 K==

. < 3f,..\ s

p g+ v

‘2(‘—‘ = T B e )
p=1 x=1

By virtue of these identities the second mequality of (5.2) implies that fulfillment of
conditions (3.7) is equivalent to the fulfillment of the conditions

2
(2 3% 5 by ) o9
p=1

The substitation of identities (3.2) into Eqs. (3.7) is clearly analogous to the substi-
tetion into (5.3) of the Egs.

CE :;E* t gy .- 4qp), S, = CS\"l @ g1, .. Gpy O, ..., (Dq) (5.4)
obtained from Eqgs. (5.1) by substituting into them conditions (3.2). This, incidentally,
implies that Eqs. (5.4) are the equations of prescribed constraints (independent of the
control parameters) written with the aid of the additional generalized coordinates ¢ and
velocity parameters 0. Eqs. (5.4) can be obtained directly without prior establishment of
Egs. (5.1).

Egs. (5.3) are the dynamic conditions of fulfillment of the prescribed constraints
written out for the arbitrarily chosen additional generalized coordinates and velocity para-
meters. From their form we see that the method used for their construction is in complete
accord with the scheme described above.

6. An important special case of the general mechanical systems considered above are
holonomic systems subject to holonomic prescribed constraints.

Analytically this special case is characterized by the fact that there are no nonholono-
mic equations among constraint Eqs. (1.1) and (1.4). It corresponds to the equations of
motion and general dynamic conditions obtainable from (3.6) and (5.3) by the elimination
of terms corresponding to nonholonomic constraint equations. Thus, the equations of motion
of a holonomic mechanical system subject to holonomic prescribed constraints can be
written as

aS* af >
S = Qe D A E (6.1)
-

a
as O \*
T e \* ..
(dgv' ! v 2 A’p a3 ) 0 (6-2)
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Here, as in Eqgs. (5.3), the superscript * means that Egs. (5.4) must be taken into
account. However, the prescribed constraint equations consist solely of the first group of
Egs. (5.4). The second group of these equations is formal and reflects the transition from
the velocity parameters w to the parameters g in the derivation of the dynamic conditions.

Eqs. (6.1) and (6.2) conform to the expressions for the general equations of motion and
dynamic conditions containing velocity parameters. If derivatives of the generalized coor-
dinates are used as the velocity parameters, i.e. if one sets o; = ¢/, o, . ([, then Egs.
(6.1) and (6.2} can be reduced to a form more typical of holonomic systemb.

In fact, in this case

as* _ aS* _d aT*  aT* o oM _9i*
Op:  J¢:  dlog T dq: ! doy  Og; dge

where T* is the kinetic energy of the system constructed with allowance for all of its
constraints (both real and preseribed), so that Egs. (6 1) can be written as

d aT* _ a7+ of*
_— =Q* Ry .
didg;  ags + ;1 T (6.3)
In precisely the same way dynamic conditions (6 2) can be reduced to
d ar ar )' =0
e e e = (6.4)
(dt at, ag, = e 6§

Here T is the kinetic energy of the system liberated from prescribed constraints. In
Eqs. (5.4) which must be allowed for in (6.4), the second group of equations is now a con-
sequence of the first sud must be discarded.

7. Examples. Holonomic systems.

2} A persuit problem. The material point M, pursues another material point M,, approa-
ching it according to a parallel homing procedore. We are to find the conditions imposed on
the forces under which approach is possible and to describe the motion of the material
points.

Parallel homing requires matching of the motion of the point M, to that of the point M,
in such a way that the direction of the straight line ¥,M, remains constant in space. Let
us take the coordinate system with its Ox axis parallel to this direction. We denote by
%y, ¥1» 34 and %3, ¥3, 53 the coordinates of the first and second material points in this
coordinate system. The parallel homing requirement then consists in the fulfillment of the
prescribed constraints

y2— =0 — =0 (7.1
during the motion of the system.

Let us find the equations of motion of the points M; and M, and the dynamic conditions
of fulfillment of prescribed constraints (7.1). Taking account of (7.1), we conclude that ous
system of two material points has four degrees of freedom. As the generalized coordinates
of the system we take the coordinates of the point M ; and the coordinate x; of the point
M,.

2 Conatructing the Lagrange equations, we obtain the equations of motion of the system
(Eq. (3.7)). These are of the form

mz" =Xy, (mt+m)y =Y +Y,
(my 4 mg) 2" =2y + 23, mez” = X,
In order to find the dynamic conditions of fulfillment of prescribed constraints (7.1}, we

liberate the points M, and M, from these constraints. We take the coordinates y; and z; of
the point M, as the additional generalized coordinates.

(7.2
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Having constructed the Lagrange equations for the coordinates y, and z, and elimina-
ted the variables y, and z, from the resulting equations with the aid of (7.1), we arrive at
the required dynamic conditions

mgly” =Y, mety” = Zy (7.3)
Taking account of these relations, we transform Eqgs. (7.2) into
mxy” = Xy, my" = Yy, myn” = Z, myZy” = X,

The significance of these equations is evident. The first three equations describe the
free spatial motion of the pursued point #,. The last equation is the equation of motion of
the pursuing point along the straight homing line. Dynamic conditions (7.3} express the
requirements imposed on the force components acting on the pursuing point orthogonally
to the homing line.

b) Appell’s problem ([1], p. 351). A plate I situated in a stationary horizontal plane
is hinged at the point C to a round disk 3, lying in the same plane and rotating about
its fixed center 0. The constant force F parallel to the stationary straight line Ox acts on
the plate 2 at the point A lying on the straight line connecting the point C with the center
of gravity G. By means of a special coupling the servomotor  acts on the disk X ; in
such a way as to maintain constant the relationship between angles
& - ﬁ =3 ﬂ/g

a = {0z, Oc), P = (0z, CA), OC=R, €A =aqa, CG=0b

Thuas, a controlled system has been defined. The control parameter u is the {(algebraic)
torque exerted by the servomotor on the disk X ,. We are given the prescribed constraint
(7.4) which must be fulfilled during the motion of the system.

Let us write out the equation of motion of the above mechanical system assuming that
the prescribed constraint is fulfilled. We add the latter to the real constraints of the sys-
tem. Our mechanical system then has one degree of freedom. Let us take the angle a as
its generalized coordinate.

The kinetic energy of the system in terms of a” can be written as

27 = [M(R*+ b2+ k%) + Lla®

Here M is the mass of the plate X , M42 is its moment of inertia with respect to the
point G, and I is the moment of inertia of the disk with respect to the axis of rotation.
The generalized force corresponding to the coordinate o can be written as

Q, = F(— Rsina + ncosa) + u
Constructing the Lagrange equation, we amrive at the equation of motion of the system
M (R2 4 2+ k%) + Lloe” + F(Rsina — acosa) = u (7.5)

Next let us write out the dynamic condition of fulfillment of the prescribed constraint
Liberating the system from prescribed constraint (7.4), we take the angle 3 as the addi-
tional generalized coordinate. The kinetic energy T of the liberated system can be written
as

(7.4

2T = M [R%? - b%f'% 4 2Ra/B’ cos (o6 — B) -+ R2B2] 4 La'?
The generalized force corresponding to the coordinate R is given by
Q= — Fasin

Now let us construct the Lagrange equation for the coordinate 3. Eliminating 3 by

means of Eq. (7.4), we obtain the required dynamic condition
M (% 4+ k)a” — MRbo't = Fa cosa

Let us retum to the variable 3 (we car do this by virtue of the one-to-one correspon-

dence between g and 8 set up in (7.4)). We obtain Egq.

M (b + k) B — MRB? + FasinP = 0 (7.6)
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which is analogous to Appell’s Eq. (3) (1], p. 351).

Appell interprets this equation as the equation of motion of the system under the
servoconstraint and points out its fandamental distinctness from Eq. (4) ([1], p. 352)
describing the motion of the system in the case where conatraint (7.4) is effected by direct
tangency between ¥ and X ;. Appell attributes this distinctness to the special character
of fulfillment of servoconstraint {7.4).

The above solution of the problem indicates, however, that Appell was in error. Eq.
(7.6) is the dynamic condition of fulfillment of preacribed constraint (7.4) imposed on the
system. The equation of motion of the system is Eq. (7.5), which on being stated in terms
of the variable 8 becomes

MR-+ k) 4 L]1B" -+ F(RcosB + asinf) =u

The above equation is close to Appell’s Eq. (4), differing from it only in its right-hand
side. This is quite natural in view of the controlling action of u on the disk 2. ,.

Now let us consider some examples of nonholonomic systems.

c} A pursuit problem. The material point o pursues another material point ¥, ,approa-
ching it by the pursuit method. We are to construct the equations of the problem.

The pursuit method presupposes that the vector of the absolate velocity of the pursuing
point M, is continuously pointed at the pursued point during the motion of the points. In
other words, the condition

2y {2y — o) = ¥ /(g1 — ) = %'z — 2) (1.7
must be fulfilled during the motion of the points. In this expression x,, 4, 33 and %5, ¥
z, denote the coordinates of the points M, and ¥, respectively, These relations are the
prescnbed constraint equations to which the motion of the points is subject. Egs. (7.7)
are clearly nonintegrable.

Let us write the equations of motion of the points M, and M, taking account of const-
raints (7.7). Regarding (7.7) as the real constraints of the system, we take as our velocity
parameters the components "1' ¥15 z,' of the velocity of the point M; and the common
ratio @ in Egs. {7.7). Eqs. (7.7) then give us

z =0{e— %), B =0E—k) »n=0(E—17) (7.8)

From this we have

T, =0 (1) — 2) + o (2] — o (5, — )]
¥o" =0 (g — y) T o [y — o (11 — p)l
2" = @ (23 — 23) 0 {3 — ® (23 — z,)]

Let us construct the energy of accelerations of the system of points M and M,
28 = my{a"t " ")+ mn(xo 2 L y2 "2 L 7,72)
Taking account in § of the above expressions for x,”, y2 " 32 ‘, we write out the
Appell equations for the velocity parameters %, ¥ir 1, @,
mzy" = Xj, my" = Yy, mz” = 2,
My {0 (2 — &) + © [y — @ (x; — 2,)]} (2 — ) +
+ my {0 (g — yo) F 0 1 — o (11 — v} (51— y2) + (7.9)
+ mg{@ (73 — ) + 0 [z —0 (3 — )]} (5 — @) =
= Xo{zy — )+ Yolh — v) + Za (21 — )
The mechanical significance of the above equations is as follows. The first three
equations are clearly the equations of free spatial motion of the pursued point #,. In order
to expose the mechanical meaning of the last Eq. of system (7.9), we introduce into our

discussion the velocity v of the point #,. As is evident from (7.8), this velocity is related
to w by Eq.
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2 =0 V{zi—z) + (1 — v + (21— 22

Hence we have .

v =0 [(7y — 2)% + (11 — )? + (21 — 2)*] -
Fo{zn—z) [ —o0(z— )]+ G —w n—o0 @ —wl+
+ (5 — 2) [ — 0 (5 — )]} [(21 — 2)* + (1 — ya)? + (2 — 22)2]—1/’
so that the last equation of system (7.9) can be written as
mgy’ = Xe(F1— r2) + Yo (1 —y2) + 23 (21 — 23)
V(o — =l F(yi— y2l* + (21— 2o

This equation describes the variation of the velocity of the pursuing point M,.

Now let us construct the dynamic conditions of fulfillment of constraints (7,.7). Rejec-
ting the prescribed constraints, we take in place of Egs. (7.8) equations such as

2 =01 — %), Yy’ =0 —)+0, 2 =0(—z)+o (7.0

These equations can be solved for the variables @, Oy, 0o Hence, 0, and g, can be
taken as the additional velocity parameters. The transition from Egs. (7.10) to Egs. (7.8)
is effected by equating the variables ¢, and o, to zero. But this transition is equivalent
to consideration of prescribed constraints (7.7). Hence, the equations of the prescribed
constraints with the variables o, and o, take the form 0; = 0 and o, = 0.

We construct the energy of accelerations of the system of points M, and M, with
allowance for Expressions (7.10) and write out the Appell equations in the variables o,
and g,. Taking account of the prescribed constraints in the resulting equations, i.e. set-
ting @, and o, equal to zero in these equations, we arrive at the following dynamic con-

ditions:
m {0 (i — ) tolpn —eym—w=Y,
my {0 (2, — 2) + 0 [z — @ (2 — 2)]} = Z,
Egs. (7.11), (7.9), and (7.8) form the complete system of equations for the pursuit prob-
lem considered.

(7.11)

d) Appell’s problem ([1], p. 354). The material plane P can slide translationally over
the stationary horizontal plane Oxy. The sphere X of radius R can roll without sliding on
the plane P. The motion of the plane P is regulated automatically in such a way that the
center of the sphere moves uniformly about the axis Oz with the angular velocity w rela-
tive to the stationary axes 0x, Oy, O3. We are required to construct the equations of the
problem.

The motion of the sphere is pure rolling on the plane P. The center of the sphere must
rotate uniformly about the axis Oz. The first limitation is the real constraint and the
second the prescribed constraint imposed on the motion of the sphere. Let us write their
equations. By &, 7 we denote the coordinates of the center of the sphere, by p, ¢, r the
components of the instantaneous angular velocity of the sphere, and by u, v the coordin-
ates of some point on the plane. The requirement that the center of the sphere must des-
cribe a circle can then be written in the form of two Egs.,

g+ on=0, W"—0f=0 (7.12)
The condition of no sliding on the part of the sphere yields
¥ —¢R=u, N+ pR = (7.13)

The motion of the sphere is controlled. Formally this is expressed by the dependence
of Egs. (7,13) on the derivatives u”, v’ of the coordinates of one of the points on the
plane P which in this case play the role of the control parameters.

Let us construct the equations of motion of the sphere. The equations of the pres-
cribed constraints of the system (7.12) do not depend on the control parameters. The equa-
tions of the real constraints (7.13) are parametric and are therefore allowed for by means of
indefinite multipliers.
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Taking into account Egs. (7.12) of the prescribed constraints of the system, we take as
our velocity parameters the components p, g, r of the angular velocity of the sphere. The
energy of accelerations of the sphere can then be written as

28 = M@? B4+ W2) -+ YsMR2 (P + ¢'2 + r'?)

where M is the mass of the sphere. Let us construct the Appell equations in terms of the
velocity parameters p, g, 7. Taking account of the fact that the sphere moves by inertia

so that the generalized forces are equal to zero, we arrive at the following equations of
motion of the sphere:

2MRp' — 5hy =0, 2MR¢ + 54, =0, r =0 (7.14)

where A, and A, are indefinite multipliers associated with the first and second Egs. of
(7.13), respectively.

To Egs. (7.14) we must add the dynamic conditions of fulfillment of prescribed con-
straints (7.12). To this end we liberate the sphere from prescribed constraints (7.12) and
complement the system of velocity parameters. As our additional velocity parameters we
take the derivatives £ 7" The energy of accelerations of the liberated system is given
by Expression

28 =M (82 +n") + s MR (P2 + ¢ 1 1'%)

Constructing the Appell equations for the additional velocity parameters £, 7 “ and
allowing in then for the prescribed constraint equations (7,12), we arrive at the following
dynamic conditions:

Mo + Ay = 0, Mo + A =0 (7.15)

Equations (7.12) to (7.15) form the complete system of equations of the problem.
Eliminating the indefinite multipliers from Eqs. (7.14) with the aid of Egs. (7.15), we
obtain

2Rp' + S0’ =0, 2R¢' — S0l = 0, r=20 (7.16)

Equations (7.16) and (7.12) describe the motion of the sphere. Eqs. (7.13) give the

velocity with which the plane P must be moved in order to impart the required motion to the
“sphere.

The above equations differ from those given by Appell (Equations (7) of [1], p. 355).
The latter can be obtained readily, however, by differentiating Eqs. (7.13) with respect to
time and then applying Eqgs. (7.12) and (7.16). Incidentally, this implies that Appell’s
equations are of higher order than ours in this case.

e) Example of a prescribed constraint which cannot be realized by a controlled mechan-
ical system. A material ring slides freely along a smooth rod hinged at one end. The ring
moves under the action of the force F which pulls it toward the free end of the rod. We are
to determine the motion (rotation) of the rod about its fixed end which will oblige the ring
to describe a circle with its center at the pivot point of the rod.

We conclude immediately that the required control does not exist. This is evident from
the fact that the force F and the inertial force acting on the ring are both directed outside
any circle with its center at the rod pivot point.

Now let us demonstrate this conclusion formally. We take the angle of rotation of the
ring as the control parameter 4. the directing rod along which the ring slides is a real
parametric constraint. Let us find the dynamic condition of its fulfillment. With allowance
for the prescribed constraint, the ring can be said to have one degree of freedom (in accor-
dance with the general theory, we ignore the parametric real constraint).

As our generalized coordinate we take the polar angle @ of the ring. Then the real con-
straint to which the ring is subject can be written as

f = —u=20
As the additional generalized coordinate we take the polar distance r from the ring to the
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rod pivot point.

The kinetic energy T of the ring liberated from the prescribed constraint (without
regard for the real parametric constraint) can be written as

2T = m (P 4 ra’?)

Let us construct the Lagrange equation for the variable r. Taking account of the fact

that the equation of the real parametric constraint is independent of r, we obtain
mr — mra’® = F

Taking account of the prescribed constraint equation (in this case it is r = ¢ = const),

we arrive at the dynamic condition
— mea'®* = F
Since F > 0, it is clear that this condition cannot be fulfilled. Q.E.D.

8. The above analysis of the motion of controlled mechanical systems with prescribed
constraints would be incomplete without the following remarks.

In solving actual problems one encounters situations in which the control parameters
of the mechanical system are or must be in some way inter-related. Thus, in one of the
Appell problems considered here the motion of the sphere was assumed to occur by
inertia. The control parameters were the components of one of the points (to be specific,
let us call this point A) of the plane P. But it is quite possible for the sphere to be acted
on by forces which, moreover, depend on the position of the plane P. In this case the
coordinates of the plane P together with the components of the velocity of the point 4
must also be considered as control parameters. It is clear, however, that such a set of
control parameters is not independent. The indicated parameters are, in fact, related differ-
entially.

Another example is the motion of a controlled mechanical system with prescribed con-
straints in which the number of system control parameters exceeds the number of pres-
cribed constraints to be fulfilled. The excess control can be eliminated by imposing
additional restrictions. The latter can take the form of optimum control criteria. It is possi-
ble, however, that the required uniqueness of system motion might be achieved simply by
interrelating the control parameters in some way.

This necessarily gives rise to the question of how given relationships hetween system
control paremeters affect the derivation of the equations of motion of a system with pres-
cribed constraints. In answer to this we note that in deriving the equations of a given
problem we in no case assumed the control parameters to be independent. Thus, insofar
as such dependences do occur, they must be added to the equations of the problem ob-
tained by the technique developed above.
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