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The problem of motion of controlled mechanfcal systems under prescribed constraints 
(servoconstraints) is considered. The problem consists in applying a control to a given 

system to aaaure that in the course of its motion a given number of specified relationships 
among the variables of the problem (prescribed system constraints) are fulfilled. This 
involves finding the required control and determining the character of motion if the pres- 
cribed constraints are fnlfilled exactly. 

In e sense, the problem is not new. In 1922 B&in published his thesis on gyroscopic 
compasses in which he pointed out the existence of a special class of mechanical systems 
which were then called servosyetema end which now might more properly be termed con- 
trolled mechanical systems. The distinctive feature of these systems lies in the ape&l 
means of effecting certain limitations (called “servoconsttaints” by Appall) on the system 
motion, In his work Appell [ 11 developed the theory of such mechanical systems. However, 
consideration of servosystems as controlled systems mates poaaible a new approach to 
the problem, enabling one to pose the problem of motion of systems under prescribed con- 
straints (servoconstraints) more precisely end to obtain more complete results. 

In the present paper we shall develop a general formal method for solving the problem. 
The method consists in reducing tbs prescribed constraints of the system to real COB- 
straints and in adding to the equations of system motion obtained under this aasnmptioa 
the dynamic conditions of fulfillment of the prescribed constraints (the conditions of 
equality to zero of their reactions). The resulting equations constitute the solution of the 
problem. 

1. A controlled system of n materiel points moves in some station 
7 

Carteaian coardin- 
ate system. We denote by xl, x2* x3, mt = mp = mS the coordinates an maaa of the first 
point of the ayatem, by a,, xx, x6, rn* = rn5 = m6 the coordinates and maaa of the second 
point, etc. The points of the system are subject to ideal holonomic and nonholonomic con- 
straints which may include cone&tints dependent on the control perametera lfl. Let the 
equations of the system be 

f&1 51, . . -, %n, Ul, - * -, u/J = 0 

fg+w (6 Xl, * * .,53nr Xl', - - *,5n', Ul, l - ., u*) = 0 
(1.1) 

where I 
lhi 

, ,.., 4 are the system control parameters. 
e orcea acting on the system will be assnared to be specific fnnctions of time, the 

coordinates and vhfocitiea of the system points, snd the control parametera. By X,, X9, X, 
we denote the components of the coordinate axes of the resaltent of the active forces 
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acting on the firat point of the system, and by X,, X #, X6 the components of the resultant 
of the force0 acting on the rrecond point, etc. 

As in the case of uncontrolled l yateme, the motion of controlled mechanical systema in 
daacribed by the fundamental equation of mechanics [2l 

Z (mixi -&)&I$= 0 (1.2) 
where SX~,...~ S+,, are the componenta of the possible diaplacements of the ayatem gfven 
by the t&l reladona 

From Eq. (1.2) we obtain the following general equationa of motion of a controlled me& 
at&Cal avatem: 

(1.3) 

where ko, md ?&+x are indefinite Lagrange moltipliem. Summatfbn in Eqs. (1.3) ia cartied 
out over-all conatrafnts (1.1) of the mechauical ayatem under coneideratfon. 

Let ua conaider the followfng problem. We are given a certain number of relations 

ipo (t, Xl, * . .* xm, Ul, . . ., UK) = 0 
(1.4) 

(Ph+n (k 21, * - ., %?u Xl’, * - *, %z’, Ul, . * *, %) = 0 
By effecting appmprfate control of the system we must guarantee exact ~lffl~~t of 

theae relationa in the course of ayatem motion. A more precise way of stating the problem 
is to aah the following quertiona: Once relationa (1.4) are fulfilled at the initial instant, wt 
ia the control required to guarantee their fhlfilhnent in the future? Wkat will be the conse- 
quent motion of the ayatem once such a control ia applied? 

Relationa (1.4) will be called the prescribed conatrainta or esrvoconatrainta of the sys- 
tem. Thea8 conatrainta are, a0 to apeah, “enforced” by the appropriate system control. In 
thia aenae prescribed conatrafnta are identical to the servoconatrainta of B6guin and 
Appell. Thfa ia clearly apparent from the following description of mervoconatraints given 
by Appall [I]: 

‘* There exiats an importaut claaa of mechanisms in which constrainta are realized by 
a meatta entirely different from thoae considered up to now. For mechaniama of thia class 
the means of reaktation of the conatrahtts cannot be ignored. 

“ The conatrainte realized by these mechaniama are arbitrary; moat often they are 
holonomic. But the conatraintiare effected not by aimple contact - not, so to apeah, pas- 
aively. Their realiratfon involve8 the uae of various forces (electromagnetic forces, com- 
preaaed Jr praaaure, etc.), i.e. of auxiliary energy sources which are.automaticalIy actua- 
ted and automatically controlled in mud a way that the given oonatraint ia realized at each 
inatant. Such a me&&m can be compared with a living organiam acting by direct contact 
and regulating ita efforta in ouch a way aa to fulfill a given conetreint.” 

Appall ,did not use the term *‘control*’ in his description of servoconatrafnta. Thfa term 
aimply did not exiat at the tfme, But it is clear that in descrfbing the meann of fulfillmettt 
of servoconmtrafnta Appell had in mind that which we now call “control”. 

The above problem of the motion of a controlled mechauical system with prescribed con- 
atrainta can be solved by simaItaneouo inveatigatfon of Eqa. (1.3), (1.1). and (1.4). The 
required ayatem control in titan obteined from the compatibility condition for theeeeqnatione. 
The motion can then be detatmfned by direct integration of Eqa. of aystem motion (i.3). 

‘IMa method of solving the problem in hudly expedient, aince it involvsta integration of 
a system of differential eqaetfonn of, generally l peahfng, a rather high order. Thia necec 
sarily gives rise to the problem of lowering the order of the dffferentfal eqaadona of the 
problem with due regard for ita l peciBc features. In partfcular, there arfaes the taah of 
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derfvfng specialized equations for the case under investigation which describe the problem 

frilly but at the same time are of the lowest possible order. 

The classical method of solving this problem for ordinary mechanical systems is to 

introduce generalized coordinates. As will be shown below, the problem can be solved in 

exactly the same way for the motion of controlled mechanical systems with prescribed 

constraints. 

2. Let us assume that equations independent in the control parameters have been isola- 

ted from Eqs. (l.l), and that the control parameters have been eliminated from the remain- 

ing Eqs. (1.1). Further, we assume that the transformed Eqs. (1.1) are numbered in such a 

way that the parametric equations form the first o equations in the group of holonomic 

constraint equations aud the first b equations in the group of nonholonomic constraint 

equations. 

Taking into account the equations of the bolonomic constraints independent of the con- 

trd psrameters, we introduce the generalized parameters of the system qtr..,, qea Then, 
‘k&kg account of the equations of the nonbolonomic constraints independent of the control 

parameters, we introduce the generalized velocity parameters ot ,..., c+,. 

Note 2.1. The exclusive use of constraint equations independent of the control parame- 

ters in introducing the generalized coordinates is intended to exclude derivatives of the 

control parameters from tbe equations of moJoa of the system, and thus to avoid artificial 

increases in the order of the final system of differential equations of the problem. 

Expressing the Cartesian coordinates of the system in terms of its generalized coor- 

dinates and the derivatives of the latter with respect to time in terms of the generalized 

velocity parameters, we have 

~*=~i(~,ql,...*qcJ, qa' = A,(& Ql, * * +,!?a, 011 * ' l * %I) (2.1) 

These equations enable us to transform the general equations of system motion (1.3) to 

the form 

C2.2) 

where S is the energy of accelerations of the system and ae are the generalized forces of 

the system referred to the velocity parameters. The latter are of the form 

Eqs. (2.2) are ordinary Appell equations in which the (real) pusmetric constraints of 

the system are tahen fnto account by way of indefinite multipliers. To Eqs. (2.2) we must 

add the equations of the real parametric constraints of the ayatem sfter we have written 

these in terms of the generalized coordinates and velocity parsmeters 

fp(f,qlt . * *,qa, ul, * * '9 uk) =O (2.3) 

as well as Eqs. (1.4) of the prescribed constraints of the system expressed in the same 

variables. 

S. Consideration of the real constraints of the system independent of the control pars- 

meters by way of generalized coordinates and velocity parameters enables as to exclude a 

number of “excess*’ (dependent) variables from the differential equations of the problem 

aud thns to reduce their overall order. Further elimination of dependent variables from the 

differentfsl equations snd therefore further reduction of the overall order of’the equations 

can be effected through consideration of tbe prescribed constraints of the system. 

Let us suppose that, as in the case of Eqs. (1.1). we have isolated from Eqs, (1.4) of 



468 V.I. Kirgetov 

the prescribed constraints of the system the equations independent in the control parame- 
ters both among themselves and in relation to the parametric equations of transformed 

system (1.1); let us assume, moreover, that the control parameters have been eliminated 
from the remaining Eqs. (1.4). Next, we renumber the transformed Eqs. (1.4) in such a way 
that only the first c equations in the group of holonomic prescribed constraint equations 

and the first d equations in the group of nonholonomic prescribed constraint equations 
depend on the control parameters, We assume that the generalized coordinates and velocity 

parameters of the system have been chosen in such a way that the fulfillment of the pres- 
cribed constraints independent of the control parameters is equivalent to the vanishing of 

the last s - r generalized coordinates and the last p - q generalized velocity parameters. 
For convenience, we write 

Qri-1 = IlIp * * *I Qs = G-r, aq+1 = Xl, - * a, op = np_* (3.1) 
The equations of the prescribed constraints of the system independent of the control 

parameters can then be written as 

Q=O,..., T&.=0, nt=o,..., 7cp-q=o (3.2) 

Taking account of the latter equations, we can rewrite the equations of the parametric 
prescribed constraints as 

(pa@, Ql, * . ., qr, Ult * * *, %f) = 0 (3.3) 
(Ph+n(~,ql,...rqrr~lr...,~q,~l,....~~) =o (~=1,2 ,..., c; n=l,2 ,..., d) 

Now let us substitute conditions (3.2) into Eqa. (2.3) and (2.2). We first rewrite both of 
the latter with allowance for notation (3.1). Eqs. (2.3) then become 

fP P9 Ql? * * ‘, qr, %, . * .I rls-r, Ulr * f *, UJ = 0 

fc+x v, Qlr * * *, qr, Ill, * . -7 s-r, Wit * * *, @q, Xl, * 9 4, $3-q, Ul, 

(p = 1.2, . . .) a; x = 1,2, . . .) b) 
Eqs. (2.2) become 

q = n, + 5 A, $ + i hg+( f&y an, (E=1,2,...,q; z= 
p=1 

5 
x-1 

+ 

where in the second group of equations we use the notation 

rL = Qp++ (z==1,2,...,p-q) 

(3.4) 

1,2,...,P-q) = 

For convenience, we denote the result of substituting conditions (3.2) into any given 
expression A by A +. Eqs. (2.3) into which we have substituted conditions (3.2) can then 

be written as 

f;(t,ql,..., qr,ul )..., uJJ=o, fg+:(~,q17 . . . . Qr,Wl,...,Oq,Ul,...,U~)=O 

* *, Uk) = 0 

(p = 1, 2, .( a; x = 1,2, .) b) (3.5) 
Substituting conditions (3.2) into Eqs. (3.4), we take into account the identities 

whose validity can be readily demonstrated. 
Making use of these identities, we can substitute conditions (3.2) into Eqs. (3.4) and 

then reduce them to 

(3.6) 
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(g)* = II,” + i h, (Z)‘+ i h,, (f&j* 
P=l + X=1 5 

(3.7) 

It remains for us now to substitute conditions (3.2) into group of Eqs. (2.1) relating the 
derivatives of the generalized coordinates to the generalized velocity parameters. To this 
end we rewrite these equations taking account of notation (3.1). We have 

q;\’ = A, (t, ql, . . ., q,, ~1, . . .t rs+ wt . - -> wpr at - - -t J$,+) 

qu’ = A,.+Y (6 ql, . . ., q,, rlr, . . ., Y+_~, wr - . ., ~~9 ~1, . - -9 $_9) 

Introducing conditions (3.2) into these equations, we obtain 

(3.8) 

By hypothesis, the variables qtr..., qr, ol,..., oq must remain independent upon ful- 
fillment of the prescribed constraints of the system. Hence, the equations of the second 
group of system (3.8) must be satisfied identically. The remaining Eqs. (3.8) together 
with Eqs. (3.6) and (3.7) and the equations of the parametric reel (3.5) and prescribed 
(3.3) constraints of the system form the complete system of equations of the problem of 
motion of a controlled mechanical system with prescribed constraints under consideration. 

4. We shall now explain the mechanical significance of Eqs. (3.6) and (3.7). 
It is readily apparent that Eqs. (3.6) constitute the equations of motion of the mechani- 

cal system under consideration provided its prescribed constraints which are independent 
of the control parameters are interpreted as real constraints and sre taken into account 
accordingly. 

Eqs. (3.7) mean that the reactions of the prescribed constraints of the system, insofar 
as the latter sre interpreted as real constraints, must be equal to zero in the course of 
system motion. This implies that the fulfillment of the prescribed constraints is achieved 
exclusively by way of the external active forces and reactions of the real psrametric 
constraints acting on the system. 

Note 4.1.The term “(generalized) constraint reaction” used above denotes the totality 
of increments to be added to the generalized forces of the system in order to assure con- 
tinuance of its initial motion. This definition of constraint reaction is in complete agreement 
with the general mechanical significance of the term and is, in fact, identical to the 
definition of a generalized constraint reaction given in [3]. 

Thus, a mechanical system obeys prescribed constraints as though these constraints 
were real; the reactions of the latter must equal zero, however. 

We shall call Eqs. (3.6) the equations of motion of a mechanical system with prescribed 
constraints. Eqs. (3.7) will be called the conditions of equality to zero of the prescribed 
constraint reactions, or (since they are ultimately the conditions imposed on the forces in 
order to guarantee fulfillment of the prescribed constraints) the dynamic conditions of ful- 
fillment of the prescribed system constraints. The possibility of interpreting and allowing 
for the prescribed constraints of a mechanical system as real constraints will be called the 
prescribed-to-real constraint reduction principle. 

We note that the principle of reduction to real constraints applies both to prescribed 
constraints independent of the control parameters and to parametric prescribed constraints. 

In fact. in taking account of both parametric and real constraints one must introduce 
terms corresponding to these constraints into the equations of the problem by way of 
indefinite Lagrange multipliers. But these multipliers are equal to zero because they are 
proportional to the reactions of the corresponding constraints, and the latter must equal 
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zero by virtue of the reduction principle. For this reason, all terms associated with para- 

metric prescribed constraints drop out of the equations of the problem. The equationa of 

parametric prescribed constraints are therefore simply added on to the equations of the 

problem, precisely as we have been doing from the very start. 

5. The chief practical value of the reduction principle lies in the possibility it affords 

of deriving immediately the equations of motion of a controlled mechanical system with 

prescribed constraints. 

To this end, the parametric constraints (first the real and then the parametric constraints 

independent of the latter and of each other) are isolated from the totality of (real and prea- 

cribed) system constraints. The control parameters are eliminated from the remaining con- 

straint equations. 

The equations of motion of the syatem with consideration of all its constraints are then 

constructed in accordance with the reduction principIe. It is suggested that the parametric 

conatrafnts of the system be allowed for by means of indefinite multipliers, and the con- 

.atrafnta independent of the control parameters by the introduction of generalized coordinates 

and velocity parameters. This method of allowing for constraints affords a maximum reduc- 

tion in tire order of the differential equations of the problem. 

To the equations of system motion must be added the dynamic conditions of fulfillment 

of the prescribed constraints, the equations of the parametric real and prescribed cons- 

traints, and the equations relating the derivatives of the generalized coordinates to the 

velocity parameters. 

In deriving the dynamic conditions, once its equations of motion have been constructed 

the system is liberated of prescribed constraints, while the totality of its generalized 

coordinates and velocity parameters is supplemented by the required number of new 

generalized coordinates and velocity parameters. The dynamic conditions of fulfillment of 

the prescribed constraints are obtained through formal consideration of the prescribed 

constraint equations in the equations of motion of the liberated system corresponding to 

the additional generalized coordinates and velocity parameters. 

We derived the dynamic conditions in the form of Eqs. (3.7). It is true that in deriving 

them we made use of a special set of additional generalized coordinates and velocity para- 

meters for which the equations of the prescribed constraints (independent of the control 

parameters) could be written in the simplest form (3.2). However, the general scheme for 

constructing dynamic conditions presented above makes it possible to obtain equations 

equivalent to (3.7) for practically any set of additional generalized coordinates and velo- 

city parameters of the system. 

In fact, let us assume that upon liberation of the system from prescribed constraints the 

additional generalized coordinates and velocity parameters are chosen arbitrarily, We de- 

note these by <t,..., La-r, ~1, . . . . ~n_o, respectively. Any two sets of generalized coordin- 

ates and velocity parameters of the system can stand in a one-to-one correspondence. Such 

a correspondence likewise exists between the arbitrary and previously introduced special 

sets of the indicated variables. Let us assume that this correspondence is expressed by 

Eqs. 

T;, = 6, (r, g1* * *I gr. ‘11, . . ‘P q?_,) 

6, = 6, (2, Ql, . . *, qr, Q, (1 . ., 7&, @I, . . ., o*s Zl,. . .I +.J 
(5.1) 

Since ql,..,, qrr al,...* mq enter into both sets of generalized coordinates and velocity 

parameters, by virtue of the one-to-one character of the corraapondence expressed by Eqs. 

(5.1) the latter must be solvable for the varfablea *II...., I)~_,., ~tr,.,., ~$,_a. This means, 

generally speaking, that the inequalities 



The motion of controlled mechanical systems 471 

(5.2) 

must be valid. 

Tahing into account Eqs. (5.1), we obtain 

and then 

--III,- -j hp$L-; hg+.!!p as 
aa,* 

P=l T X=1 + 

By virtue of these identities the second inequality of (5.2) implies that fulfillment of 

conditions (3.7) is equivalent to the folffllment of the conditions 

as 
zq -H”-i i,f!&~ 

II=1 v X=1 
(5.3) 

The substitution of identities (3.2) into Eqs. (3.7) is clearly analogous to the snbsti- 

tution into (5.3) of the Eqs. 

5, = 5,* (k 419 . . ., 4r). a" = a,*(& q1, . . ., qr, 01, . . .,op) (5.4) 

obtained from Eqs. (5.1) by substituting into them condidons (3.2). This, incidentally, 

implies that Eqs. (5.4) are the equations of prescribed constraints (independent of the 

control parameters) written with the aid of the additional generalized coordinates 5 and 

velocity parameters (I. Eqs. (5.4) can be obtained directly without prior establishment of 

Eqs. (5.1). 

Eqs. (5.3) are the dynamic conditions of fulfillment of the prescribed constraints 

written out for the arbitrarily chosen additional generalized coordinates and velocity para- 

meters. From their form we see that the method used for their construction is in complete 

accord with the scheme described above. 

6. An important special case of the general mechanical systems considered above are 

holonomic systems subject to holonomic prescribed constraints. 

Analytically this special case is characterized by the fact that there are no nonholono- 

mic equations among constraint Eqs. (1.1) and (1.4). It corresponds to the equations of 

motion and general dynamic conditions obtainable from (3.6) and (5.3) by the elimination 

of terms corresponding to nonholonomic constraint equations. Thus, the equations of motion 

of a holonomic mechanical system subject to holonomic prescribed constraints can be 

written as 

as* 
-I.= 

aa,' CL+* + i bps 
P=l 5 

The dynamic conditions of fulfillment of the prescribed constraints tahe tbe form 

(6.1) 

(6.2) 
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Were, as in Eqs. (5.3), the superscript * means that Eqs. (5.4) must be taken into 

account. However, the prescribed constraint equations consist solely of the first group of 

Eqs. (5.4). The second group of these equations is formal and reflects the transition from 

the velocity parameters CJJ to the parameters (I in the derivation of the dynamic conditions. 

Eqs. (6.1) and (6.2) confcrm ta the expressions for the general equations of motion and 

dynamic conditions containing velocity parameters. If derivatives of the generalized coor- 

dinates are used as the velocity parameters, i.e. if one sets w4 = (I:‘, oy cd, then Eqs. 
% 

(6.1) and (6.2) can be reduced to a form more typical of holonomic systems, 

In fact, in this case 

a.s* as* d cPT* l+T* _ -_ _ r? - - a,ip** lJfp*I ajp* 

a(qr 3q 
d dt (3qF’ 

--t 
w dq; xg -= aj-=- w 

where T* is the kinetic energy of the system constructed with allowance for alf of its 
constraints (both real and prescribed), so that Eqs. (6.1) can be written as 

d 8T* c3T* -_-- 
dt aq,’ dq: 

In precisely the same way dynamic conditions (6.2) can be reduced to 

(6.3) 

(6.4) 

Here 7’ is the kinetic energy of the system liberated from prescribed constrafnts. In 
Eqs. (5.4) which mast ba allowed for in (6.41, the second group of equations is now a con- 
saqttencs of the firmt and must be discarded. 

7. Examples. Holonomic systems. 

a) A p-nit problsm. The material point M, pursues another material point Mt, approa- 
ching it according to a parallel homing procsdors. We are to find the conditions imposed on 
the forces under which approach is possible and to describe the motion of the materiel 
points. 

Parallel homing requires matchiug of the motion of the point M, to that of the point MI 
in sttch a way that the direction of the straight line M,hf, remains constant in space. Let 
us take the coordinate system with its Or axis parallel to this direction. We denote by 
ut, fr, sI and sl, yz, 22 the coordfaates of the first and second material points in this 
ooordinats system. The parallel homing requirement then consists in the fulMlment of the 
prescribed conatrsirtts 

Yz - b% = 0, z, --z,=o (7.1) 
drufng the motion of the system. 

Lst us find the eqnationo of motion of the points RI, and M, aad the dynamic conditions 
of Willmat of prescribed oonstraints (7.1). Tel&g account of (7.11, we conclude that ow 
system of two material pointa has four degrses of tetdom. As the generalized coordinates 
of the systsm we take the coordinates of the point M t and the coordinate s2 of the point 

M2* 
Conrtrnctfng the Lagrsnge equations, WC obtain the equations of motion of the system 

(Eq. (3.7)). These are of the form 

In order to fiid the dynamic conditions of ~lfil~ent of prercribed constraints (7.1). we 
liberate the points M, and Hp from these constrsints. We take the coordinates ya ssd 22 of 
the poiat Y, as the additional generalised coordinates. 
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Having conatrrrcted the Lagrange equations for the coordinates y2 and z2 and elimina- 
ted he variables r2 and z2 from the resulting equstione with the aid of (7.1), we arrive at 
the required dynamic conditions 

m,y,” = Y*, mzzl” = 2, (7.3) 
Taking accoant of these relations, we transform Eqs. (7.2) into 

ml=1 ” = x mlyl" = Y1, mlzln = Z,, m&” = x, 

‘f’he aignificanc:‘of these equations is evident. The first three equations describe the 

free spatial motion of the pnrsued point Ut. The last equation is the eqnation of motion of 
the pursuing point elong the straight homing line. Dynsmic conditions (7.3) express the 

requirements imposed on the force components acting on the pursuing point orthogonally 

to the homing line. 

b) Appell’a problem ([I], p. 351). A plate 2 situated in a stationary horizontal plane 

is hinged at the point C to a roond diak x t lying in the ssme plane and rotating about 
its fixed center 0. The constant force F parallel to the stationary straight line Ox acts on 
the plate x at the point A lying on the straight line connecting the point C with the center 

of gravity C. By means of a special coupling the servomotor M acta on the disk x t in 

audh a way as to maintain constant the relationship between angles 

CL - @ = x/2 

CC = (02, UC), 0 = (02, CA), OC = Ii, CA = u, CG = b 
(7.4) 

Thaa, a controlled system has been defined. The control parameter u is the (algebraic) 

torque exerted by the servomotor on the disk p t. We arc given the prescribed constraint 

(7.4) which must be fnlfillcd during the motion of the ayutem. 
Let us write out the equation of motion of the above mechanical system assuming that 

the prescribed constraint is fulfilled. We add the latter to the real constraints of the sys- 

tem. Our mechanical system then has one degree of freedom. Let us take the angle a as 

its generalized coordinate. 

The kinetic energy of the system in terms of a’can be written as 

2T = fM (B2 + 6% + !9) + iI] a’2 

Here M is the mass of the plate Z: , Mk 2 is its moment of inertia with respect to the 
point G, and It is the moment of inertia of the disk with respect to the axis of rotation. 

The generalized force corresponding to the coordinate a can be written as 

Q, = F (- R sin a -/- n cos a) j- u 

Constrncting the Lagrange equation, we arrive at tbe equation of motion of the system 

[&f (R2 + b2 + p) + I,] CL” + F (R sin a - a cosa) -_ U (7.5) 
Next let us write out the dynamic condition of fulfillment of the prescribed constraint 

Liberating the system from prescribed constraint (7.41, we take the angle fl as the addi- 
tional generalized coordinate, The kinetic energy T of the Iiberated system can be written 

as 

22 = M [RZcd2 + bZB’* + 2Rcdf3’ cos (cc - p) i_ n’-B”] + ~,~‘z 

The generalized force corresponding to the coordinate p is given by 

Qb = - Fasinp 

NOW let us constmct the Lagrauge equation for the coordinate p. Eliminating p by 

means of Eq. (7.4). we obtain the required dynamic condition 

M (b2 + P) ,” - MRbaf2 = Fa cosa 

Let US return to the variable f? (we cnn do this by virtue of the one-to-one correapon- 

dence between a and @ set up in (7.4)). We obtain Eq. 

M (bs -i- P) 8” - MRbfi“2 -j- Fa sin fi = 0 (7.6) 
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which is analogous to Appell’a Eq. (3) 611, p. 351). 

Appell interprets this equation aa the equation of motion of the system under the 

servoconstraint and points oat its fundamental distinctness from Eq. (4) ([I], p. 352) 

describing the motion of the system in the case where constraint (7.4) is effected by direct 

tangency between 2 and 2 t. Appell attributes this distinctness to the apeciaf character 

of fulfillment of aervoconatraint (7.4). 

The above solution of the problem indicates, however, that Appell was in error. Eq. 

(7.6) is the dynamic oondition of fulfillment of prescribed constraint (7.4) imposed on the 

system. The equation of motion of the system is Eq. (7.5), which on being stated in terms 

of the variable B becomes 

[M (Z?2 + b’J + k2) + II] fY’ + F (R cos fi + a sin fl) = u 

The above equation is close to Appell’s Eq, (4f, differing from it only in its right-hand 

side. This is quite natural in view of the controlling action of u on the disk x t. 

Now let us consider some examples of nonholonomic systems. 

c) A puranit problbm. The material point M, purauea another material point Mt,approa- 

thing it by the pursait method. We are to construct the equations of the problem. 

The pursuit method presupposes that the vector of the absolute velocity of the pursuing 

point M, is continuously pointed at the pursued point during the motion of the points. In 

other words, the condition 

x,‘/(x, - x2) = 50g1 - g2) = ~‘i(r, - z2j (7.7) 

must be fulfilled during the motion of the points. In this expression .x1, yt, at and x2’ YP 

t 2 denote the coordinates of the points Mt and M+J, respectively, These relations are the 

prescribed constraint equations to which the motion of the points is subject. Eqa. (7.7) 

sre clearly nonintegrable. 

Let ua write the equations of motion of the points M, and M, taking account of conat- 

raints (7.7). Regarding (7.7) as the real constraints of the system, we take as our velocity 

parameters the components x t: y t’, a 2’ of the velocity of the point M, and the common 

ratio o in Eqs. (7.7). Eqs. (7.7) then give us 

52’ = 0 (51 - &Jr Y,’ = @ (Y1 - Yz), zz’ = 0 (ai - 22) (7.8) 
From this we have 

5,” = 0’ (X1 - x2) -t- w 1x1’ - 0 (Xl - x&l 

Y,” = 0’ (Y1 - Y2) + CiJ IYI’ - 0 (YI - Y,)l 
.z*” Z a’ (21 - 22) -t 0 IQ’ - 0 (21 - z2)l 

Let us construct the energy of accelerations of the system of points M, and M,, 

2s =L mt (21”2 + yr”2 + Z,“Z) --;- I?&:! (Tz”Z + y2”2 + 2$$“2) 

Taking account in S of the above expressions for xl*‘, y,‘: aa‘: we write out the 
Appell equations for the velocity parameters x t< y t: z t: w , 

m,x,” = Xl, ma” = YI, mlzln = 21 

m2 iw’ (x1 - 2%) + 0 Is’ - 0 (x1 - x&l) (x1 - 4) + 

+ m, W h - y2) + u [VI’ - w (~1 - h)l) (r/l - v2) + (7.9) 

+ m2 ia’ (3 - %)+a Iz1)-- 0 (3 - z2)lI (21 - 22) = 

= x, (21 - z2) + y2 (?A - Y2) + 22 (3 - z2) 

The mechanical significance of the above equations is as follows. The first three 

equations are clearly the equations of free spatial motion of the pursued point Mt. In order 

to expose the mechanical meaning of the last Eq. of system (7.9). we introduce into our 

discussion the velocity v of the point M,. As is evident from (7.8), this velocity is related 

to o by jZq. 
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u==ol/( Xl - x2)* $ (y1 - y2)” + (z1- 22)” 
Hence we have 

v’ = 0’ [(x1 - x*)2 + (yr - y,)B + (21 - s,w* + 

+ 0 ((51 - z2) 1x1’ - 0 (q - z,)l + (!/I - Y2) Iv1 - 0 (Yl - Ya)l + 

+ (21 - 22) [zi - 0 (21 - 411 I(q - x212 + (Yl - Y2)2 + (21 - 22)2P 

so that the last equation of system (7.9) can be written as 

mzv, = X2(~1--x2) fYz(Y1--2) + Z2(21-- 22) 

V-G --2)2 + (Yl-- Y2)2 + (21- a)2 

This equation describes the variation of the velocity of the pursuing point M,. 
NOW let US construct the dynamic conditions of fulfillment of constraints (7.7). Rejec- 

ting the prescribed constraints, we take in place of Eqs. (7.8) equations such as 

=2 ' = 0 (51 - x2), Y,' = OJ (Yl - Y2) + (J1t 22' = 0 (21 - 22.) + 02 (7.10) 

These equations can be solved for the variables w , cvr, (I?. Hence, ut and ~2 can be 

taken as the additional velocity parameters. The transition from Eqs. (7.10) to Eqs. (7.8) 

is effected by equating the variables crl and o2 to zero. But this transition is equivalent 

to consideration of prescribed constraints (7.7). Hence, the equations of the prescribed 

constraints with the variables ut and o2 take the form ut = 0 and (~2 = 8. 

We construct the energy of accelerations of the system of points M, and M, with 

allowance for Expressions (7.10) and write out the Appell equations in the variables ut 

and u2. Taking account of the prescribed constraints in the resulting equations, i.e. set- 

tingal and u2 q e ual to zero in these equations, we arrive at the following dynamic con- 

ditions: 

m2 10 (YI - YA + 0 [YI’ - 0 (YI - y2)lI = Y2 

m2 P’ (Q - G) + 0 1~’ - 0 (zt - z,)I) = Z, 
(7.11) 

Eqs. (7.11), (7.9), and (7.8) form the complete system of equations for the pursuit prob- 

lem considered. 

d) Appell’a problem ([I], p. 354). The material plane P can slide translationally over 

the stationary horizontal plane Oy. The sphere 2 of radius R can roll without sliding on 

the plane P. The motion of the plane P is regulated automatically in such a way that the 

center of the sphere moves uniformly about the axis Ox with the angular velocity o rela- 

tive to the stationary axes Ox, Oy, Oz. We are required to construct the equations of the 

problem. 

The motion of the sphere is pure rolling on the plane P. The center of the sphere must 

rotate uniformly about the axis Ox. The first limitation is the real constraint and the 

second the prescribed constraint imposed on the motion of the sphere. Let us write their 

equations. By 6, 3 we denote the coordinates of the center of the sphere, by p, q, r the 
components of the instantaneous angular velocity of the sphere, and by I(, u the coordin- 

ates of some point on the plane. The requirement that the center of the sphere must des- 

cribe a circle can then be written in the form of two Eqs., 

E’+oR=o, TJ’-Cot=0 (7.12) 

The condition of no sliding on the part of the sphere yields 

E’ - qR B u’, q’ + pR = v’ (7.13) 

The motion of the sphere is controlled. Formally this is expressed by the dependence 

of Eqs. (7+13) on the derivatives a’, u’of the coordinates of one of the points on the 

plane P which in this case play the role of the control parameters. 

Let US construct the equations of motion of the sphere. The equations of the pres- 

cribed constraints of the system (7.12) do not depend on the control parameters. The equa- 

tions of the real constraints (7.13) are parametric and are therefore allowed for by means of 

indefinite multipliers. 
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Taking into account Eqs. (7.12) of the prescribed constraints of the system, we ta4e as 

our velocity parameters the components p, q, r of the angular velocity of the sphere. The 

energy of accelerations of the sphere.can then be written as 

2s = MU* (<*,+ q?) + */cAR2 ( P’~ + qf2 + r’2) 
where M is the mass of the sphere. Let us construct the Appell equations in terms of the 

velocity parameters p, q, r. Taking account of the fact that the sphere moves by inertia 

so that the generalized forces are equal to zero, we arrfve at the following equations of 

motion of the sphere: 

2MRp’ - 51, = 0, 2MRq’ + 5hI = 0, r’ = 0 (7.14) 
where A, and h, are indefinite multipliers associated with the first and second Eqs. of 

(7.13). respectively. 

To Eqs. (7.14) we must add the dynamic conditions of fulfillment of prescribed con- 

straints (7.12). To this end we liberate the sphere from prescribed constraints (7.12) and 

complement the system of velocity parameters. As our additional velocity parameters we 

take the derivatives e’, 9 ‘. The energy of accelerations of the liberated system is given 

by Expression 
2s = M (~“2 + T-P) + %MR2 (da + q’r + r’2) 

Constructing the Appell equations for the additional velocity parameters 4 ‘, 71 ’ and 

allowing in then for the prescribed constraint equations (7.12). we arrive at the following 

dynamic conditions: 

Mo2E + h, = 0, Mdq + h2 = 0 (7.15) 

Equations (7.12) to (7.15) form the complete system of equations of the problem. 

Eliminating the indefinite multipliers from Eqs. (7.14) with the aid of Eqs. (7.15), we 

obtain 

ZRp’ + 5dq = 0, 2Rq’ - soy = 0, r’ = 0 17.16) 
Equations (7.16) and (7.12) describe the motion of the sphere. Eqs. (7.13) gfve the 

velocity with which the plane P must be moved in order to impart the required motion to the 

d sphere. 

The above equations differ from those given by Appell (Equations (7) of [l] , p. 355). 

The latter can be obtained readily, however, by differentiating Eqs. (7.13) with respect to 

time and then applying Eqs. (7.12) and (7.16). I ncidentally, this implies that Appell’s 

equations are of higher order than ours in this case. 

e) Example of a prescribed constraint which cannot be realized by a controlled mschn- 
ical sy#tem. A material ring slides freely along a smooth rod hinged at one end. The ring 

moves under the action of the force F which pulls it toward the free end of the rod. We are 

to determine the motion (rotation) of the rod about its fixed end which will oblige the ring 

to describe a circle with its center at the pivot point of the rod. 

We conclude immediately that the required control does not exist. This is evident from 

the fact that the force F and the inertial force acting on the ring are both directed outside 

any circle with its center at the rod pivot point. 

Now let us demonstrate this conclusion formally. We take the angle of rotation of the 

ring as the control parameter II. the directing rod along which the ring slides is a real 

parametric constraint. Let us find the dynamic condition of its fulfillment. With allowance 

for the prescribed constraint, the ring can be said to have one degree of freedom (in accor- 

dance with the general theory, we ignore the parametric real constraint). 

As our generalized coordinate we take the polar angle Q of the ring. Then the real con- 

straint to which the ring is subject can be written aa 

f=-ol--U=O 

As the additional generalized coordinate we take the polar distance r from the ring to the 
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rod pivot point. 

The kinetic energy T of the ring liberated from the prescribed constraint (without 

regard for the real parametric constraint) can be written as 

2T = m (r’2 + Pa’2) 

Let us construct the Lagrange equation for the variable r. Taking account of the fact, 

that the equation of the real parametric constraint is independent of r, we obtain 

mr’ - mraQ = F 

Taking account of the prescribed constraint equation (in this case it is r = c = const), 

we arrive at the dynamic condition 

- ma’s = F 
Since F > 0, it is clear that this condition cannot be fulfilled. Q.E.D. 

8. The above analysis of the motion of controlled mechanical systems with prescribed 

constraints would be incomplete without the following remarks. 

In solving actual problems one encounters situations in which the control parameters 

of the mechanical system are or must be in some way inter-related. Thus, in one of the 

Appell problems considered here the motion of the sphere was assumed to occur by 

inertia. The control parameters were the components of one of the points (to be specific, 

let us call this point A) of the plane P. But it is quite possible for the sphere to be acted 

on by forces which, moreover, depend on the position of the plane P. In this case the 

coordinates of the plane P together with the components of the velocity of the point A 

must also be considered as control parameters. It is clear, however, that such a set of 

control parameters is not independent. The indicated parameters are, in fact, related differ- 

entially. 

Another example is the motion of a controlled mechanical system with prescribed con- 

straints in which the number of system control parameters exceeds the nnmber of prss- 

cribed constraints to be fnlfilled. The excess control can be eliminated by imposing 

additional restrictions. The latter can take the fonu of optimum control criteria. It is possi- 

ble, however, that the reqaired uniqueness of system motion might be achieved simply by 

interrelating the control parameters in some way. 

This necessarily gives rise to the question of how given relationships between system 

control parameters affect the derivation of the eqnations of motion of a system with prer 

cribed constraints. In answer to this we note that in deriving the equations of a given 

probiem we in no case assumed the control parameters to be independsnt. Tbas, insofar 

as sach dependence8 do occar, they must be added to the equations of the problsm ob- 

tained by the techniqae developed above. 
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